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[1] Recently documented trends in the existing records of
hurricane intensity and their relationship to increasing sea
surface temperatures suggest that hurricane intensity may be
increasing due to global warming. However, it is presently
being argued that the existing global hurricane records are
too inconsistent to accurately measure trends. As a first step
in addressing this debate, we constructed a more
homogeneous global record of hurricane intensity and
found that previously documented trends in some ocean basins
are well supported, but in others the existing records contain
trends that may be inflated or spurious. Citation: Kossin,

J. P., K. R. Knapp, D. J. Vimont, R. J. Murnane, and B. A. Harper

(2007), A globally consistent reanalysis of hurricane variability

and trends, Geophys. Res. Lett., 34, L04815, doi:10.1029/

2006GL028836.

1. Introduction

[2] The relationship between global warming and trends
in hurricane activity is presently a topic of active research
and debate, and much of the debate is rooted in questions
about the suitability of the hurricane records that have been
used to identify these trends [Landsea et al., 2006]. These
‘‘best track’’ records [Jarvinen et al., 1984; Chu et al.,
2002] comprise global historical measures of hurricane
position and intensity. Intensity is defined in terms of
sustained surface wind speed, although the details of this
definition can vary according to the protocols of individual
forecast offices. Teams of forecasters update the best track
data at the end of the hurricane season in each ocean basin
using data collected during and after each hurricane’s
lifetime (tropical cyclones are known by different names
in the various ocean basins, but here we are using the term
‘‘hurricane’’ in a generic sense). The variability of the
available data combined with long time-scale changes in
the availability and quality of observing systems, reporting
policies, and the methods utilized to analyze the data make
the best track records inhomogeneous by construction.
Temporal consistency is sacrificed in favor of best possible
absolute accuracy at every period during the lifetime of each
hurricane.

[3] After the advent of global monitoring with geosta-
tionary satellites in the mid to late 1970’s, metrics related to
hurricane frequency are generally considered accurate, but
the known lack of homogeneity in both the data and
techniques applied in the post-analyses has resulted in
skepticism regarding the consistency of the best track
intensity estimates. As a first step toward addressing this
shortcoming, we constructed a more homogeneous data
record of hurricane intensity by first creating a new consis-
tently analyzed global satellite data archive from 1983 to
2005 [Knapp and Kossin, 2007] and then applying a new
objective algorithm to the satellite data to form hurricane
intensity estimates. Our new homogeneous record of hurri-
cane intensity is denoted as the UW/NCDC (University of
Wisconsin-Madison/National Climatic Data Center) record.
Where the best track records sacrifice consistency in lieu of
best possible absolute accuracy, our new record sacrifices
best possible absolute accuracy for temporal consistency. It
is important then to note that the UW/NCDC record serves
as a complement to the best track, and not as a replacement.

2. Data and Algorithm Development: Objective
Estimation of Hurricane Intensity

[4] The new satellite data archive described by Knapp
and Kossin [2007] was constructed at NCDC through a
careful reanalysis of 23 years of global geostationary
infrared satellite imagery (July 1983 to December 2005)
to remove sources of time-dependent biases. The archive
comprises �169,000 observations in more than 2,000
tropical storms. The spatial and temporal resolution of the
imagery was made uniform at 8 km and 3 h which are the
coarsest resolutions of the earliest data. Each image was
re-positioned on the hurricane center at that time using the
center-positions from the best track. Here we restricted the
data to only include fixes that were over water and between
45�N and 45�S latitude.
[5] The infrared brightness temperature (Tb) fields were

azimuthally averaged about the storm center to produce
radial Tb profiles. To isolate the leading patterns of vari-
ability, an empirical orthogonal function (EOF) analysis was
performed on the Tb profiles. The EOFs contain informa-
tion about hurricane eye temperature (when an eye is
present), the height of the convective eyewall clouds, and
the average radial structure of cloudiness around the storm
[cf. Kossin et al., 2007], and these factors are correlated
with hurricane intensity. For example, warmer eye temper-
ature and higher eyewall clouds (indicated by colder cloud-
top Tb) are strongly related to greater intensity. This is the
foundation of the Dvorak Enhanced Infrared (EIR) tech-
nique [Dvorak, 1984], which is utilized by all tropical
forecast offices in every ocean basin to estimate hurricane
intensity with geostationary infrared imagery. In the Dvorak
EIR technique, eye Tb and cloud-top Tb are directly related

GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L04815, doi:10.1029/2006GL028836, 2007
Click
Here

for

Full
Article

1Cooperative Institute for Meteorological Satellite Studies, University
of Wisconsin-Madison, Madison, Wisconsin, USA.

2National Climatic Data Center, NOAA, Asheville, North Carolina,
USA.

3Department of Atmospheric and Oceanic Sciences, University of
Wisconsin-Madison, Madison, Wisconsin, USA.

4Risk Prediction Initiative, Bermuda Institute of Ocean Sciences,
Garrett Park, Maryland, USA.

5Systems Engineering Australia Pty. Ltd., Bridgeman Downs, Queensland,
Australia.

Copyright 2007 by the American Geophysical Union.
0094-8276/07/2006GL028836$05.00

L04815 1 of 6

http://dx.doi.org/10.1029/2006GL028836


to intensity with a look-up table. The EOFs represent these
temperatures but also contain additional information about
radial structure such as eye size and radial extent of the cold
cloud-tops above the eyewall. This additional information is
also related to intensity [Kossin et al., 2007].
[6] The algorithm used for estimating hurricane intensity

was formed using a subset of the satellite data
corresponding to best track intensity estimates that were
contemporaneous with low-level aircraft reconnaissance in
the Atlantic. This subset comprises 1,940 measurements in
137 storms from 1989 to 2004. The aircraft-measured
intensities were used as ground truth for training the
algorithm. After performing the EOF analysis on the entire
sample of Atlantic Tb profiles, a multi-variate regression
was formed using the aircraft-matched subsets of the time-
dependent expansion coefficients [principal components
(PCs)]) of the analysis, along with storm latitude, local
mean solar time in hours, and the logarithm of the age of the
storm measured in 3-hourly periods since reaching named-
storm status (maximum wind greater than 17 m s�1). These
predictors were chosen based on a priori expectations: The
relationship between Tb (represented by the PCs) and
intensity is analogous to the basis of the Dvorak technique,
and latitude has been shown to modify this relationship
[e.g., Kossin and Velden, 2004] as well as affect radial
structure and size [Kossin et al., 2007]. Storm age serves as
a climatology predictor and allows the regression to distin-
guish between the very cold cloud-tops that tend to occur in
nascent tropical storms, and the cold cloud-tops that occur
later during the mature stage. Local solar time is included to
address the diurnal cycle in the size of the cold-cloud
canopy above storms [e.g., Kossin, 2002] and the diurnal
cycle of eye size [Muramatsu, 1983], but this predictor adds
only a small contribution.
[7] A stepwise regression technique was applied to the

predictor pool with the requirement of significance above
the 99% confidence level. This procedure identified nine
predictors that were then used in the regression algorithm:
the first 6 PCs, latitude, age, and local solar time. All higher
order PCs were not significant. In our training sample (N =
1940), the regression explains 64% of the variance of
aircraft reconnaissance-measured intensity. The order
(greatest to least) of relative contributions of the predictors
to the regression is: PC1, age, PC3, PC4, PC5, PC2, latitude,
PC6, and local solar time. Co-linearity between the predic-
tors is not an issue: the PCs are orthogonal by construction
and all other correlations between the PCs and the remain-
ing predictors are insignificant.
[8] The algorithm was cross-validated using a jackknife

procedure: each storm was individually removed from the
full training sample and EOF analysis was performed on the
sub-sample of remaining storms. The regression was then
trained on the sub-sample and tested on the storm that was
left out. This was done for all storms in the sample and the
cumulative errors were tallied. The independently-derived
error distribution is shown in Figure 1 and demonstrates
reasonable skill of the algorithm. Figure 1 can be compared
directly to Figure 8 of Velden et al. [2006], which is based
on a very similar error analysis of operational Dvorak
technique estimates from the National Hurricane Center
[Brown and Franklin, 2004]. They compared Dvorak in-
tensity estimates (from the period 1997–2003) with best

track intensity that were contemporaneous with aircraft
reconnaissance, and found that 90% of their (absolute)
errors were less than 9 m s�1, 75% were less than 6 m s�1,
and 50% were less than 3 m s�1. In comparison, 90% of the
absolute errors of our algorithm were less than 12 m s�1,
75% were less than 8 m s�1, and 50% were less than 4 m s�1.
Overall Root Mean Square (RMS) error was 6 m s�1 for
the Dvorak estimates compared with 9 m s�1 using our
algorithm.
[9] A physical explanation for the observed intensity

trends in the best track has been posited using connections
between upward trending tropical SST and maximum
potential intensity (MPI) theory [Emanuel, 1988, 2005;
Webster et al., 2005; Knutson et al., 2001; Trenberth,
2005; Hoyos et al., 2006]. Stated simply, the argument
is that while there is no direct contemporaneous correlation
between local SST and hurricane intensity (a hurricane can
routinely spend its entire intensity evolution over relatively
constant SST), an increase of SST does increase the
maximum potential intensity, and over long enough time-
scales this should be reflected by an increase on the
extreme end of the hurricane intensity spectrum. To
uncover this relationship, Emanuel [2005] used a Power
Dissipation Index (PDI), which considers the cube of the
maximum wind speed and thus accentuates the strongest
cases, and Webster et al. [2005] considered the frequency of
the most extreme intensities (Saffir-Simpson categories 4
and 5). It is important then that our algorithm capture
maximum intensities well. Using the aircraft reconnaissance-
based data introduced above, we compared the maximum
intensity achieved by each individual storm to the maximum
intensity estimated by our algorithm. The errors were normally
distributed (bias = 0.005 m s�1, skewness = 0.34, and RMS
error = 8.5 m s�1). The seasonally averaged maximum
intensities have very small errors (RMS error = 2.7 m s�1)
and the seasonal-mean time series of estimated maximum
intensity correlates very strongly with the reconnaissance-
based time series (r = 0.99). However, closer scrutiny revealed
the potential for a problem— the algorithm does tend to under-
estimate the strongest intensities. This result represents a

Figure 1. Storm-by-storm cross-validated intensity error
distribution for our objective algorithm. Error is defined as
the absolute difference between aircraft reconnaissance-
based best track intensity and our estimated intensity. Mean
Absolute Error (MAE), Root Mean Square error (RMS),
and bias are shown.
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potential weakness in the method, but we will provide coun-
tering evidence for the fidelity of the algorithm in the following
section.
[10] It was previously noted that the operational Dvorak

estimates are somewhat more accurate than our simple
automated algorithm, and this suggests that a complete
reanalysis of our new satellite data record using the Dvorak
technique would increase the accuracy of the new intensity
estimates. Such a reanalysis would be a significant under-
taking however. The Dvorak technique requires a human
analyst to follow a set of procedures that may take
3–5 minutes per satellite image. For our new global satellite
imagery archive, this would require about 3,400 –
5,700 hours of labor. Given this constraint, the method
applied here, while far from a panacea, is a reasonable first
cut at the problem. Future analyses will hopefully expand on
our work.
[11] Our algorithm was trained in the Atlantic, but since

our goal was to create a consistent intensity record in lieu of
a record with maximum absolute accuracy, we can apply the
algorithm in any basin. The fundamental relationships
between infrared imagery (as well as the other predictors)
and intensity do not change among the various ocean
basins, and the Dvorak technique is applied in much the
same way everywhere. There are differences in the method
for converting raw Dvorak technique output into intensity
estimates, but these differences can only create a temporally
constant bias and this will not affect the trend analyses
shown in the next section. The high accuracy of the
algorithm in the East Pacific, which will be demonstrated
below, also suggests that the algorithm behaves predictably
outside of the basin in which it was trained.

3. Results

[12] We first show comparisons between the UW/NCDC
and best track records when applied to the North Atlantic
[the Atlantic best track is constructed and maintained by
personnel at the National Hurricane Center (NHC)]. Our
goal in this work, as stated above, is to test the veracity of
hurricane variability and trends in the best track, and we are
not concerned with absolute contemporaneous comparisons
between the records. To focus only on comparisons of
variability and trends, all variables discussed here are first
normalized by their means and standard deviations.
[13] To address the results of Emanuel [2005], Figure 2

(top left plot) compares PDI derived from the best track and
our new UW/NCDC record (the other plots are described
below) and demonstrates excellent agreement in both var-
iability and trend (PDI ¼

Pn
i¼0 V

3
i ; where Vi is an intensity

estimate and n is the total number of intensity estimates in
that season). The largest difference is seen in the 1995
season, where the algorithm tended toward greater intensi-
ties, but there are no systematic differences between the

records and the trends are identical. The trends for both
records are significant (following Webster et al. [2005],
significance is inferred throughout this work by a Mann-
Kendall trend test with a requirement of 95% confidence or
greater). These upward trends are known to be part of a
multi-decadal variability that has been attributed to natural
internal forcing and, more recently, external anthropogenic
forcing [Kerr, 2000;Goldenberg et al., 2001; Bell and
Chelliah, 2006; Mann and Emanuel, 2006; Trenberth and
Shea, 2006].
[14] To address the findings of Webster et al. [2005], we

considered frequency and percentage of the most intense
storms. In our framework, these are represented by ‘‘2s’’
events, that is, storms that achieve a maximum intensity
greater than two standard deviations from the 23-year mean
of all intensities. For the Atlantic best track, a 2s event
denotes a maximum intensity of 58 m s�1. Thus, 2s events
almost exactly represent Saffir-Simpson category 4–5 hur-
ricanes (intensity greater than 59 m s�1). Figure 2 shows the
comparison of frequency/percentage of 2s events in the two
records and again we find good agreement in variability and
trend (all trends are significant). The UW/NCDC record
systematically contains fewer events, but there are no time-
dependent differences that affect trends.
[15] The notable similarities between the two Atlantic

records demonstrate that our simple objective algorithm
captures hurricane intensity well in a mean sense, and that
the best track intensities have apparently remained fairly
consistent over the past two decades. Note that the algorithm
was trained with 1,940 points, but the plots of Figure 2
represent the complete Atlantic record (N = 10,520). Within
the limitations of the algorithm and the 23-year span of the
data, our results strongly support the findings of Emanuel
[2005] and Webster et al. [2005] for the Atlantic.
[16] We now consider the best track for the Eastern

Pacific, which is also constructed and maintained by the
NHC (in this basin, we considered the period 1984–2005
because there were early-season storms prior to the July
1983 start of our data). Figure 2 (top middle plots) shows
the comparison between the UW/NCDC and best track
records in that basin, and again we find excellent agreement
in variability and trends. The PDI trends are downward and
significant, while the frequency and percentage of 2s events
contain no significant trends.
[17] The comparisons between the best track and UW/

NCDC records in the Atlantic and East Pacific provide high
confidence that our algorithm captures the relevant aspects
of hurricane activity, and can perform extremely well
outside the Atlantic where it was trained. We now apply
the algorithm to the remaining hurricane-prone ocean
basins. The best track data for these basins (Northwest
Pacific, South Pacific, and the Northern and Southern
Indian Oceans) are constructed and maintained by a differ-
ent agency [the Joint Typhoon Warning Center (JTWC)]

Figure 2. Comparisons of best track and UW/NCDC records in each of the six hurricane-prone basins. For each basin,
there are three vertically-oriented plots showing normalized PDI, and frequency and percentage of the most intense
hurricanes [storms that achieve intensities greater than 2 standard deviations (2s) from the total 23-year sample mean]. 2s
events in the Atlantic, East, West, and South Pacific, and Northern and Southern Indian Ocean best track records represent
maximum intensities greater than 58, 61, 65, 55, 47, and 57 m s�1, respectively. The thicker lines are smoothed with a
1-4-6-4-1 binomial filter. Straight lines on the PDI plots are best-fit lines of the unsmoothed time series.
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using guidelines and protocols that differ from the NHC.
Best track data from the JTWC are issued with a warning
that confidence in the intensity estimates is generally low
and decreases retrogressively in time, and that comparisons
between these data and other best track data from other
agencies should be made ‘‘with extreme caution’’ [Chu et
al., 2002]. Our purpose here is to determine whether these
stated data issues exhibit any time dependency that could
introduce a spurious trend.
[18] The remaining plots of Figure 2 show comparisons

between the JTWC best track and the UW/NCDC record for
those four basins (in these basins, we considered the period
1983–2004 because the 2005 JTWC best track data were
not yet available). In general, agreement is not as good as
that found with the NHC best track, but the algorithm does a
reasonable job of capturing inter-seasonal variability. How-
ever, there are time-dependent differences in every basin
that cause a measurable reduction in the amplitude of the
trends in the UW/NCDC record. Note that since we use the
storm positions from the best track data to orient the satellite
imagery and form our intensity estimates, the differences
between the best track and UW/NCDC records are due
solely to intensity differences. The 22-year trends of PDI
and frequency/percentage of the most intense hurricanes,

calculated from the best track, were found to be significant
only in the S. Indian Ocean. No trends were significant in
the UW/NCDC record. Our results in the Northwest Pacific
are in good agreement with the recent study of Wu et al.
[2006] which used best track data from two additional
sources (the Regional Specialized Meteorological Centre
in Japan and the Hong Kong Observatory in China) and
found no trends in PDI or category 4–5 storms.
[19] Since aircraft reconnaissance into storms was routine

in the Northwest Pacific during the earlier period of our
record 1983–1987, the best track intensities during this
period are likely to be more accurate than the later period
1988–2004 after the termination of reconnaissance. This
indicates a systematic over-estimation of intensity in the
later period of the JTWC record when compared to the UW/
NCDC data. This systematic bias is also evident in the
Northern and Southern Indian Oceans and the South Pacific,
but the Indian Ocean comparisons should be viewed with
some caution. Until the launch of the MeteoSat-7 satellite in
1998, the S. Indian Ocean was poorly sampled due to a gap
in the satellite viewing area, and the view-angle between the
existing satellites and storms in both the N. and S. Indian
Oceans was often highly oblique [Knapp and Kossin,
2007].
[20] A reanalysis of S. Indian Ocean storms in the

Australian region was also performed recently by Harper
and Callaghan [2006], in which the Dvorak technique was
applied to archival satellite imagery for the period 1968–
2004 (twice-daily polar orbiting satellite imagery was used
during the period prior to the 1977 launch of the GMS-1
geostationary satellite). They found that upward PDI trends
in the S. Indian Ocean best track became insignificant in the
reanalyzed data, but trends in the frequency and percentage
of Saffir-Simpson category 4–5 storms were similar
(although there was a very large overestimation in the
absolute values of the existing best track). They argued that
the remaining trend was highly dependent on the earliest
estimates from 1968–1972, which are the most suspect in
terms of fidelity, and the trend of category 4–5 storms
dissipates by the mid-1980’s. They ultimately concluded
that their reanalysis did not exhibit any trends that could not
be reasonably explained by expected deficiencies in analy-
sis or natural variability. When compared with our results
here, there is fairly compelling evidence that upward trends
in the S. Indian Ocean are overstated in the present best
track, but there is still enough uncertainty to keep the
question open.
[21] When all basins are considered together, which

constrains our analyses to the 21-year period 1984–2004,
the upward trends in the best track of PDI and frequency/
percentage of intense storms are all significant, but the
global UW/NCDC record exhibits no significant trends
(Figure 3).

4. Concluding Remarks

[22] The time-dependent differences between the UW/
NCDC and JTWC best track records underscores the
potential for data inconsistencies to introduce spurious (or
spuriously large) upward trends in longer-term measures of
hurricane activity. Using a homogeneous record, we were
not able to corroborate the presence of upward trends in

Figure 3. Similar to Figure 2, but for the combined
(global) records. The trends of PDI and frequency/
percentage of strongest storms are all significant in the best
track, but none are significant in the homogeneous UW/
NCDC record. 2/s events are based on the statistics of the
global sample.
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hurricane intensity over the past two decades in any basin
other than the Atlantic. Since the Atlantic basin accounts for
less than 15% of global hurricane activity, this result poses a
challenge to hypotheses that directly relate globally increas-
ing tropical SST to increases in long-term mean global
hurricane intensity.
[23] Efforts are presently underway to maximize the

length of our new homogeneous data record but at most
we can add another 6–7 years, and whether meaningful
trends can be measured or inferred in a 30-year data record
remains very much an open question. Given these limita-
tions of the data, the question of whether hurricane intensity
is globally trending upwards in a warming climate will
likely remain a point of debate in the foreseeable future.
Still, the very real and dangerous increases in recent
Atlantic hurricane activity will no doubt continue to provide
a heightened sense of purpose to research addressing how
hurricane behavior might change in our changing climate,
and further efforts toward improvement of archival data
quality are expected to continue in parallel with efforts to
better reconcile the physical processes involved. If our
23-year record is in fact representative of the longer record,
then we need to better understand why hurricane activity in
the Atlantic basin is varying in a fundamentally different
way than the rest of the world despite similar upward
trends of SST in each basin.
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